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Abstract. The quantum interference in a magnetic anisotropy model with four easy directions
is studied within the spin coherent-state path-integral formalism. When the particle possesses
half-integer spin, the Euclidean propagators reduce to that of a two-level system, indicating
degeneracy of the states. The results are shown to be easily reproduced by introducing an
effective tunnelling Hamiltonian, where the topological phase factor is properly incorporated.
This effective-Hamiltonian approach is demonstrated to be equivalent to the dilute-instanton
approximation. The discussions are then generalized to theN -well cases, and the symmetry of
the effective Hamiltonian is analysed. Degeneracies of the tunnelling levels are discussed in
detail. The quenching result obtained previously in the case of a double well can be recovered
by a simple diagonalization of the effective Hamiltonian.

1. Introduction

The study of macroscopic magnetic tunnelling has been a subject of extensive research
in recent years [1]. It was proposed [2–4] that the magnetization of small particles can
tunnel between degenerate easy directions through the anisotropy barrier. Experiments
involving resonance measurements [5], magnetic relaxation [6] and hysteresis loop study
[7] for various systems suggest that the tunnelling is observable.

For magnetic anisotropy with two or more degenerate easy directions where quantum
coherence occurs, there are usually different tunnelling paths connecting the same initial and
final configurations. These paths will interfere with each other, and due to the topological
phase factor, as shown by Loss, DiVincenzo and Grinstein [8] and von Delft and Henley
[9], can lead to quenching (complete cancellation) of tunnelling if the particle possesses
half-integer spin in the case of a double well. This suppression of the tunnelling splitting
turns out to be in agreement with the Kramers theorem, which demands that a state with its
time-reversed counterpart should be degenerate if the Hamiltonian is time-reversal invariant.
In fact, the Kramers degeneracy in the spin-tunnelling problem was first mentioned by Enz
and Schilling [2] and van Hemmen and Sütö [3], while the work of Loss, DiVincenzo
and Grinstein [8] and von Delft and Henley [9] demonstrated that the degeneracy can be
understood as a quantum interference effect. Later the quantum interference effects are
studied in the presence of an external magnetic field, with the field along either the hard
[10], easy [11] or medium axis [12].
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In these studies, the Euclidean transition amplitude is written as a spin coherent-state
path integral, and the saddle-point approximation is then applied. In this paper we further
study a four-well (i.e., four consecutive minima within one period) problem using this
method. When the particle possesses half-integer spin, the Euclidean propagators are found
to reduce to that of a two-level system, indicating degeneracy of the states. We show how the
results obtained in the path-integral formalism can be recovered by introducing an effective
tunnelling Hamiltonian. This approach is a development of the tunnelling Hamiltonian of
Leggettet al [13], where the topological phase factor is properly incorporated. The effective-
Hamiltonian approach is demonstrated to be equivalent to the dilute-instanton approximation
of Coleman [14], while this approach has the advantage of being very simple and direct. It
permits us to discuss the degeneracies of the levels in detail. The generalization to theN -
well situations is presented, where we get the low-lying tunnelling spectrum conveniently—
which is usually not easy to obtain within the path-integral formalism. The symmetry of the
effective Hamiltonian is analysed, and the degeneracy of the low-lying energy levels which
is a result of quantum interference is shown to follow from a ‘time-reversal’ symmetry of
the effective Hamiltonian. The quenching result in the case of a double well [8, 9] can be
reproduced by a simple diagonalization of the effective Hamiltonian.

2. The four-well problem

We first consider a problem with four consecutive minima in a period. Physically this
can be realized in a particle of tetragonal anisotropy symmetry with appropriate anisotropic
constants so that the basal plane is the easy plane. The anisotropy energy can be written
as [15]

E(θ, φ) = −K1 sin2 θ + [K2 − K ′
2 cos(4φ)] sin4 θ (1)

whereK1, K2, K
′
2 are anisotropic constants satisfyingK1, K

′
2 > 0 andK1 � K2, K

′
2. The

ground state of the particle corresponds toM pointing in one of the four easy directions:
θ = π/2, φ = 0, π/2, π, and 3π/2, or we can say that the configuration space is a
circle, and the four configurations have lowest energy. If we denote the four states as
|1〉, |2〉, |3〉, and |4〉, other minima repeat the four states with period 2π. In this paper we
restrict our attention to the ground-state tunnelling since it is expected to be dominant at
low temperatures.

2.1. Calculation of the Euclidean transition amplitude

As usual, the Euclidean transition amplitude (or propagator) is written as a spin coherent-
state path integral [16]:

〈j ′|e−(H/h̄)T |j〉 =
∫

D� e−SE/h̄ (2)

where|j〉, |j ′〉 denote any two of the four states,SE = ∫ T/2
−T/2 L dτ is the Euclidean action,

andL is the Lagrangian:

L = iSφ̇(1 − cosθ) + E. (3)

Here S is the spin quantum number. The first term of equation (3) arises from the
nonorthogonality of coherent states. It has a topological origin and is crucial for the study
of quantum interference. In fact it is this term that makes integer and half-integer spin
quantum numbers different, as first discussed by Haldane [17]. It should also be mentioned
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that one must be very careful when using the spin coherent-state path integral, since in this
approach the discontinuous paths are ignored which is unjustified [18]. Sometimes incorrect
results are yielded, as demonstrated by Enz and Schilling [2].

Using the dilute-instanton approximation [14], the propagator can be expressed as

〈j ′|e−(H/h̄)T |j〉 =
√

ω

πh̄
e−ωT/2

m−n=j ′−j (mod 4)∑
m,n

(JKT e−S0/h̄e−iSπ/2)m(JKT e−S0/h̄eiSπ/2)n

m!n!
.

(4)

Hereω is the zero-point frequency in the well,S0 the instanton action,J a Jacobian, and for
the definition ofK the reader is referred to Coleman [14]. The instanton solution mapping
|1〉 to |2〉 is found to be

φ(τ) = 1

2
arccos

[
−

√
K1 − 2K2 − 2K ′

2

(K1 − 2K2 + 2K ′
2) − 4K ′

2 tanh2 ωτ
tanhωτ

]
. (5)

Then one gets

S0/h̄ = S

∫ π/2

0

√
K ′

2(1 − cos 4φ)

K1 − 2K2 + 2K ′
2 cos 4φ

dφ = S

√
2K ′

2

K1 + 2K ′
2

and

h̄1 ≡ JKe−S0/h̄ = 4

√
K ′

2

Sπ

√
2K1K

′
2e−S

√
2K ′

2/(K1+2K2). (6)

The propagators from|1〉 to the other states are as follows:

〈1|e−(H/h̄)T |1〉 = 1

2

√
ω

πh̄
e−ωT/2

[
cosh

(
2h̄1T cos

Sπ

2

)
+ cosh

(
2h̄1T sin

Sπ

2

)]
〈2|e−(H/h̄)T |1〉 = 1

2

√
ω

πh̄
e−ωT/2

[
sinh

(
2h̄1T cos

Sπ

2

)
− i sinh

(
2h̄1T sin

Sπ

2

)]
〈3|e−(H/h̄)T |1〉 = 1

2

√
ω

πh̄
e−ωT/2

[
cosh

(
2h̄1T cos

Sπ

2

)
− cosh

(
2h̄1T sin

Sπ

2

)]
〈4|e−(H/h̄)T |1〉 = 1

2

√
ω

πh̄
e−ωT/2

[
sinh

(
2h̄1T cos

Sπ

2

)
+ i sinh

(
2h̄1T sin

Sπ

2

)]
.

(7)

One can see that whenS is a half-integer, the propagators behave like that of a two-
level system, indicating degeneracy of the states. Moreover, the propagator〈3|e−(H/h̄)T |1〉
vanishes ifS is a half-integer, in accordance with the Kramers theorem. We will show how
to understand these quantum interference effects through an effective Hamiltonian in the
following.

2.2. The effective Hamiltonian

Now we show how the results can be obtained using an alternative method. We introduce
an effective Hamiltonian

Heff = −h̄1M (8)

whereM is a linear operator defined by

M|j〉 = p|j + 1〉 + q|j − 1〉. (9)
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The matrix form ofM is

[M] = (〈i|M|j〉) =


0 q 0 p

p 0 q 0
0 p 0 q

q 0 p 0

 . (10)

Heff is Hermitian if p = q∗ and can be diagonalized. In fact they should be specified
by

p = q∗ = e−iSπ/2. (11)

Then we obtain the eigenstates

|0) = 1

2
(|1〉 + |2〉 + |3〉 + |4〉)

|1) = 1

2
(|1〉 + i|2〉 − |3〉 − i|4〉)

|2) = 1

2
(|1〉 − |2〉 + |3〉 − |4〉)

|3) = 1

2
(|1〉 − i|2〉 − |3〉 + i|4〉)

(12)

with the corresponding eigenvalues

E = −2h̄ 1 cos

(
Sπ

2

)
, −2h̄ 1 sin

(
Sπ

2

)
, 2h̄ 1 cos

(
Sπ

2

)
, 2h̄ 1 sin

(
Sπ

2

)
. (13)

One can check that we obtain the same result as equation (6) by making use of
I = |0)(0| + |1)(1| + |2)(2| + |3)(3|. On the other hand, whenS is a half-integer, there are
only two different levels with double degeneracy. This is a result of the interference.

2.3. The equivalence

Equation (8) can be viewed as indicating that in one step|j〉 goes to|j + 1〉 forward with
weight p, and to|j − 1〉 backward with weightq. We get afterN steps

MN |1〉 =
m+n=N,m−n=0(mod 4)∑

m,n

(
N

m

)
pmqn|1〉 +

m+n=N,m−n=1(mod 4)∑
m,n

(
N

m

)
pmqn|2〉

+
m+n=N,m−n=2(mod 4)∑

m,n

(
N

m

)
pmqn|3〉 +

m+n=N,m−n=3(mod 4)∑
m,n

(
N

m

)
pmqn|4〉.

Thus

MN

N !
|1〉 =

m+n=N,m−n=0(mod 4)∑
m,n

pmqn

m!n!
|1〉 +

m+n=N,m−n=1(mod 4)∑
m,n

pmqn

m!n!
|2〉

+
m+n=N,m−n=2(mod 4)∑

m,n

pmqn

m!n!
|3〉 +

m+n=N,m−n=3(mod 4)∑
m,n

pmqn

m!n!
|4〉.

Summing overN from 0 to ∞, we have

e−(H/h̄)T |1〉 =
m−n=0(mod 4)∑

m,n

(h̄1Tp)m(h̄1T q)n

m!n!
|1〉 +

m−n=1(mod 4)∑
m,n

(h̄1Tp)m(h̄1T q)n

m!n!
|2〉
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+
m−n=2(mod 4)∑

m,n

(h̄1Tp)m(h̄1T q)n

m!n!
|3〉 +

m−n=3(mod 4)∑
m,n

(h̄1Tp)m(h̄1T q)n

m!n!
|4〉.

(14)

One then obtains the same result as equation (6). The absence of the prefactor here is
because we have set the diagonal elements of the effective Hamiltonian to zero.

There is yet another way of computing the propagator. Since

M|0) = (p + q)|0)

M|1) = −i(p − q)|1)

M|2) = −(p + q)|2)

M|3) = i(p − q)|3)

one has

eM |1〉 = 1

2
eM{|0) + |1) + |2) + |3)} = 1

2
{ep+q |0) + e−i(p−q)|1) + e−(p+q)|2) + ei(p−q)|3)}

= 1

2
{[cosh(p + q) + cos(p − q)]|1〉 + [sinh(p + q) + sin(p − q)]|2〉

+ [cosh(p + q) − cos(p − q)]|3〉 + [sinh(p + q) + sin(p − q)]|4〉}.
Then the same results are obtained.

The effective Hamiltonian has at least two symmetry operations under which it is
invariant: translation and ‘time reversal’. Using these one immediately obtains the eigen-
values and eigenstates, and the degeneracies of the eigenstates can be analysed in detail.
These will be presented in the discussion ofN -well cases.

3. Generalization toN -well situations

There are physical systems where there are several wells within one period. For instance,
a system with hexagonal symmetry can possibly possess six easy axes in the basal plane
[15]. In this section, we generalize the previous discussions to situations withN wells.

Introducing the effective Hamiltonian

Heff = −h̄1M (15)

whereh̄1 is the tunnelling matrix element and

M|j〉 = p|j + 1〉 + q|j − 1〉 j = 1, 2, . . . , N (16)

with cyclic boundary conditions|0〉 = |N〉, |n + 1〉 = |1〉. Here

q∗ = p = e−i2Sπ/N . (17)

Define the translation or cyclic operatorT as

T |j〉 = |j + 1〉 j = 1, 2, . . . , N (18)

with |j〉 = |j (mod N)〉. It is easy to see thatT commutes withHeff , so they have the
same eigenstates which are characterized by the irreducible representation ofG. Therefore
T |l) = eikl |l) and

Heff |l) = −h̄1(pT + qT −1)|l) = −h̄1(peikl + qe−ikl )|l) = −2h̄1 cos
2π

N
(S − l)|l). (19)

On the other hand

〈j |l) = 〈j − 1|T −1|l) = e−ikl 〈j − 1|l) = e−i2kl 〈j − 2|l) = · · · = e−ikl (j−1)〈1|l). (20)
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Taking 〈1|l) = 1/
√

N as the proper normalization constant, one has

|l) =
N∑

j=1

|j〉〈j |l) = 1√
N

N∑
j=1

e−i(2π/N)(j−1)l|j〉 l = 0, 1, 2, . . . , N − 1. (21)

or

|j〉 =
N−1∑
l=0

|l)(l|j〉 = 1√
N

N−1∑
l=0

ei(2π/N)(j−1)l|j〉 j = 1, 2, . . . , N. (22)

Now we can calculate the propagators

〈j ′|e−(H/h̄)T |j〉 =
N−1∑
l=0

〈j ′|l)(le−(H/h̄)T |j〉e−ElT /h̄

= 1

N

N−1∑
l=0

N−1∑
l=0

ei(2π/N)(j−j ′)le21T cos(2π/N)(S−l). (23)

One can observe translation invariance of the propagator〈j ′ + n|e−(H/h̄)T |j + n〉 =
〈j ′|e−(H/h̄)T |j〉 (n is an integer) sinceT HT −1 = H.

To explore possible ‘time-reversal’ invariance [19] we introduce the operatorτ = KC

and demand thatτHτ−1 = H, whereC is the conjugation operator which is anti-linear,
andK is unitary. If we assume thatK is diagonal, then it can be chosen as

K|j〉 = ei(4Sπ/N)(N−j+1)|j〉. (24)

A smarter choice is also allowable:

K = exp(iSπJz)

where

Jz =


J

J − 1
. . .

−J + 1
−J


with J defined as(N − 1)/2.

To examine the possible selection rule of〈j ′|e−(H/h̄)T |j〉 resulting from the ‘time-
reversal’ symmetry, we use

〈j ′|e−(H/h̄)T |j〉∗ = 〈j ′|τ ∗τe−(H/h̄)T |j〉 = 〈j ′|τ ∗e−(H/h̄)T τ |j〉 = 〈j ′|K†e−(H/h̄)T K|j〉
= ei(4Sπ/N)(j ′−j)〈j ′|e−(H/h̄)T |j〉.

If 〈j ′|e−(H/h̄)T |j〉 is real and ei(4Sπ/N)(j ′−j) 6= 1, then〈j ′|e−(H/h̄)T |j〉 vanishes. This can be
realized whenN is even andj ′ − j = N/2, S = half-integer. Or, whenN is even andS
is a half-integer, we have

〈N/2 + 1|e−(H/h̄)T |1〉 = 〈N/2 + 2|e−(H/h̄)T |2〉 = · · · = 〈N |e−(H/h̄)T |N/2〉
= 〈1|e−(H/h̄)T |N/2 + 1〉 = 〈2|e−(H/h̄)T |N/2 + 2〉 = · · · = 〈N/2|e−(H/h̄)T |N〉
= 0. (25)

We now come to the degeneracy of the tunnelling levels from the ‘time-reversal’
symmetry. SinceτHτ−1 = H, τ |l) and |l) belongs to the same level, and we can show
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that τ |l) = |2S − l):

τ |l) = KC
1√
N

N∑
j=1

e−i(2π/N)(j−1)l|j〉 = K
1√
N

N∑
j=1

ei(2π/N)(j−1)l|j〉

= 1√
N

N∑
j=1

ei(2π/N)(j−1)l+i(4Sπ/N)(N−j+1)|j〉

= 1

N

N∑
j=1

N−1∑
l′=0

ei(2π/N)(j−1)l+i(4Sπ/N)(N−j+1)+i(2π/N)(j−1)l′ |l′)

= 1

N

N∑
j=1

N−1∑
l′=0

ei(2π/N)j (l+l′−2S)+i(2π/N)(−l′−l+2S+2NS)|l′)

=
N−1∑
l′=0

ei(2π/N)(−l′−l+2S+2NS)δl+l′,2S |l′)

= ei4Sπ |2S − l) = |2S − l). (26)

Therefore the conclusion is that|l) and |2S − l) are degenerate, if|l) 6= |2S − l). Use
can be made of this to study the degeneracy of the tunnelling spectrum for different spin
quantum numbersS and different number of wellsN. First we note that

|l ± N) = |l) (27)

and ∣∣∣∣2(
S + N

2

)
− l

)
= |2S − l + N) = |2S − l) (28)

which means that it is sufficient to studyS = 0, 1
2, 1, 3

2, . . . , N/2 − 1. There are altogether
four cases.

3.1. N = even, S = half-integer

All eigenstates are paired with double degeneracy by

|1), |2S − 1)

|2), |2S − 2)

...

|2S), |N(0))

|2S + 1), |N − 1)

...∣∣∣∣N2 + S − 1

2

)
,

∣∣∣∣N2 + S + 1

2

)
.

3.2. N = even, S = integer

|S) and |S + N/2) are non-degenerate; all otherN − 2 states are paired with double
degeneracy:

|S + 1), |S − 1)
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|S + 2), |S − 2)

...

|2S), |N(0))

|2S + 1), |N − 1)

...∣∣∣∣N2 + S − 1

)
,

∣∣∣∣N2 + S + 1

)
.

3.3. N = odd, S = half-integer

|S + N/2) is non-degenerate; the otherN − 1 states are doubly degenerate:∣∣∣∣S + N

2
+ 1

)
,

∣∣∣∣S + N

2
− 1

)
∣∣∣∣S + N

2
+ 2

)
,

∣∣∣∣S + N

2
− 2

)
...

|N), |N + 2S)

|1), |N + 2S + 1)

...∣∣∣∣N2 + S − 1

)
,

∣∣∣∣N2 + S + 1

)
.

3.4. N = odd, S = integer

|S) is non-degenerate; all otherN − 1 states are paired in a doublet:

|S + 1), |S − 1)

|S + 2), |S − 2)

...

|2S), |0)

|2S + 1), |N − 1)

...∣∣∣∣N2 + S − 1

)
,

∣∣∣∣N2 + S + 1

)
.

4. Summary

In this paper we have studied the interference effect in macroscopic magnetic coherence
in the case of four consecutive minima within one period. We see that whenS is a
half-integer, the propagators behave like that of a two-level system. It is shown that the
results obtained in the path-integral formalism can be recovered by introducing an effective
tunnelling Hamiltonian, if the topological phase factor is properly incorporated. This
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Hamiltonian approach is demonstrated to be equivalent to the dilute-instanton approximation.
This permits us to discuss the tunnelling spectrum conveniently. We find two symmetry
operations under which the effective Hamiltonian is invariant. The discussions are general-
ized to N -well cases, where the eigenstates and eigenvalues are obtained through group
theoretical analysis. The degeneracies of the tunnelling spectrum are discussed in detail.

We end this paper with an application of the effective Hamiltonian. In the case of a
double well,Heff is

Heff = −h̄1

[
0 p + q

p + q 0

]
whereq∗ = p = e−iSπ . One observes that the two eigenvalues are

E = ±h̄1(p + q) = ±2h̄1 cos(Sπ).

When S is a half-integer, they are degenerate. This reproduces the quenching result for
half-integer spin [8, 9], and it is indeed a simple derivation. Our previous calculation [12]
can also be simplified in the same way.
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